by Allen Williams
As government regulations continue to play an increased role in
the nation's economy, there is a demand for cheaper energy sources
to promote economic growth.
America is committing vast land resources for the storage of
Industrial and residential waste. Municipalities must contract
out or arrange for waste transportation to landfill sites which
amount to vast quantities of energy buried.
Municipal waste is a growing problem in both rural and urban
communities across the United States. Toxins are leached from the
materials in the landfill over time that potentially threaten the
water supply and many of today's modern components take centuries
to decay in the earth. Landfills contain Combustible materials
that could provide low cost energy for cities as well as improve
the environment.
Photo: Land fill space a growing problem../
The average American now discards approximately 16-20 pounds of
solid waste per day per person. This waste has traditionally been
disposed of in landfills, which require huge tracts of land and
have finite storage capacity. Many landfills will have to close
by 2040, increasing the cost of trash disposal and preventing the
land from more productive use.
The Energy Information Administration (EIA) has noted that the
energy content of solid waste in landfills has been steadily
rising over the last decade, hitting 11.73 million Btu/ton in
2005. The heat content of interred waste provides the basis for
developing an engineered fuel supporting many industrial
applications such as the production of hydrocarbons, solvents,
motor fuels, and even electric power generation.
A 2010 study(3) has found that emissions from
landfills versus municipal waste combustion using EPA's life cycle
assessment (LCA) model for the range and scenarios evaluated, that
waste combustion outperforms land filling in terms of Green House
Gas emissions regardless of landfill gas management techniques.
Innovative technologies can use buried waste as energy to convert
bio-waste into needed products. Recently, Sweden's 144 million Kristianstad
biogas plant has successfully converted municipal bio-waste into
methane for use in automobiles and heating, saving some $3.5
million per year. Biogas can be further processed to produce
organic liquids and even motor grade fuels.
Municipal Waste can be converted into fuel pellets with combustion
performance comparable to coal. The solid waste can be processed
with an engineered heat content amenable to fluidized bed and
other furnace combustion equipment. Optimally, the pellets could
be manufactured to a specific heat content. This is accomplished
by feeding shredded rubber from scrap tires into a Cuber machine
to produce fuel cubes of very high heating value, approximately
10,000 to 12,000 Btu/lb, suitable for utility power generation.
Developing a plan
The rising level of municipal waste provides incentive to develop
alternative fuels but municipal waste contains many
non-combustible components, some of which possess considerable
recycle value. Recovery of these materials help to defer the cost
of producing an engineered heat content fuel. Figure 1
illustrates the potential economic return based on EPA waste
content.
Figure 1 - Salvageable Materials And
Byproducts Revenue
Locating a suitable waste transformation plant directly on a
Landfill site saves added costs for property and waste
transportation to a site as trucks are already servicing the
facility. In natural gas producing landfills, a cheap supply of
methane for hydrocarbon synthesis is readily available.
In cases where a bio-gas facility such as Johnson County
Wastewater may be nearby, combustible waste sludge can be
transported via pipeline for fueling a suitable fluidized bed
boiler. The pipeline can pay for itself quickly as only the
installation cost from the wastewater facility to the landfill
need be considered. Additionally, Industrial solvents such as
methanol and other light hydrocarbons can be produced from the
readily available methane feedstock along with steam and or
electricity.
Waste Site Considerations
An ideal plant site would be an 850-acre landfill of which
approximately 770 acres are used for solid waste internment. Road
infrastructure would already exist to handle the associated truck
waste transport traffic. Only small infrastructure changes would
be needed to support an onsite waste processing facility.
Waste transport vehicles would contain an average of 11 tons of
municipal trash and make 1 to 3 trips per day to the site
depending on weather and other factors. The landfill could receive
as much as 5000 tons of trash per day, averaging nearly 19 trucks
per hour.
Engineered fuels could be manufactured from this solid refuse on
approximately 5 of the remaining 70 plus acres. The solid waste
would be screened to remove various metals and other
non-combustible materials before processing into specified heat
content fuels.
Waste Separation process
Figure two illustrates dual waste handling units separating
typical recyclable materials, shredding and blending recovered
solids and vehicle tires from the municipal waste to produce a
serviceable fuel pellet. It is a time and motion illustration of
the effort required to produce a 24% blend of solid waste and
rubber. The chart was developed from a real waste processing
pilot operation by RCR Partners of Colorado during the early
1980's.
Since that time computer model studies have shown that a 50-50
waste blend of solids and scrap tires provided a better heat
content fuel at 10,221 Btu/lb suitable for a small industrial
boiler consuming approximately 30 tons of fuel pellets per hour.
The 50-50 blend represents only an incremental change in
processing times.
The 2010 RCR industries salvageable Materials and Byproducts chart
documents recovery revenues that are used to offset the cost of
manufacturing an engineered fuel which is the basis of the Figure
2 chart. From this study, recyclable materials savings, operating
and labor costs can be estimated.
Figure 2 - Solids Separation and Fuel
Pellet manufacture
RCR Material Flow
Bags enter the breaker machine from the truck where large boxes
and bags are opened without damaging the contents. This permits
the separation of light and heavy components. Food waste is
removed prior to mechanical separation.
The solid waste moves through three mechanical separators upon
entering the waste handling facility to remove glass, metal cans
and plastic. Separation efficiency is greater than 90%.
Material next enters the first of two identical separators, all
components less than 1-½” size pass through the first separator
and are collected together with any metals in a common bin. These
materials require further processing to segregate glass and metal
Separator No 3 removes all fractions less than 3" x 8”. Plastics
fall into a collection bin exiting the 3rd separator.
The remaining material enters the shredder and is now all light
fraction material.
The shredder slices the solid waste into approximately a ¾” size.
The material passes through a cyclone separator to remove any dust
generated by the shredding operation. The material can then be
moistened and compressed by a Cuber machine into approximately
1-1/2" x 2" size fuel pellets.
The pellets may then be conveyed to storage vessels.
Photo: Fuel Pellets conveyed to Storage
Economics
Company reports are often good sources of economic cost data. Our
fuel processing cost is estimated from an RCR Partners pilot
plant study for the year's 1982-'83. The ordinary expense
average for these years was $2,308,500 per year and defines the
fixed costs. The Jan. '84 - Mar. '11 inflation rate was 146.7%,
adjusting the ordinary expenses to present costs gives $5,694,244
per year.
The following utility rates were used in the economic evaluation:
Coal at $55.00/ton, electricity at 7.3 cents per kilowatt, plant
water for 3.2 cents a gallon and engineered fuel expenses
according to the following cost relation. Fuel Cost/(ton) = X% *
fixed cost + (1-X)% * rubber + processing
The base rate is calculated from the total production cost minus
the revenue from salvageable materials separated out during the
manufacturing process, i.e. [$Cost - $Salvage]/Total Tons =
$Cost/ton
The salvageable material quantities from waste separation that
can be re-sold are indicated in figures 1and 2. Ferrous metal
scrap pays a max of $250/ton, Aluminum $0.75/lb and plastics
$150/ton. Salvageable tire steel belt is 2.5 lbs/tire:
Details of computer simulated quantities and expected margins in
the production of an organic solvent using engineered fuel pellets
may be found in the July 2012 issue of Chemical Engineering, Vol 119, No. 7
Conclusions
One of the most significant features of engineered fuels is the
ability to reduce the quantity of sulfur that must be scrubbed out
of atmospheric releases during combustion. In our simulation, the
computer model predicted a 20.67% reduction in SO2
emissions..
Mercury is virtually eliminated from stack gas emissions and
other airborne contaminants can be significantly reduced through
controlled waste blending.
Combusting Municipal waste in a controlled environment not only
alleviates the need for further land repositories but may also
facilitate recovery of burnable materials from many existing
landfills.
Literature Cited:
1. "Methodology for Allocating Municipal
Solid Waste to Biogenic and Non-Biogenic Energy", Energy
Information Administration, Office of Coal, Nuclear, Electric and
Alternate Fuels U.S., May 2007 Report
2. “Evaluating Green Projects – Modeling
Improves Economic Benefits”, A. Williams, K. Dunwoody,
Chemical Engineering – 119, 7, July 2012
3. "Life-Cycle Assessment of Waste Management
Greenhouse Gas Emissions Using Municipal Waste Combustor Data",
J. Envir. Engr. 136, 749 (2010);
doi:10.1061/(ASCE)EE.1943-7870.0000189 (7 pages),Brian Bahor,
Michael Van Brunt, P.E., Keith Weitz, and Andrew Szurgot
4. "Multisolid Fluidized Bed Combustion",
H. Nack, R.D. Litt, B.C. Kim, Chemical Engineering Progress, Jan
1984
5. "Energy Recovery from Fluidized Bed
Combustion", Robert J. Sneyd, Chemical Engineering
Progress, Jan 1984
6. "Methodology for Allocating Municipal
Solid Waste to Biogenic and Non-Biogenic Energy", Energy
Information Administration, Office of Coal, Nuclear, Electric and
Alternate Fuels, May 2007 Report